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1 LFCS, School of Informatics
University of Edinburgh

Edinburgh EH8 9AB, Scotland
2 SGT, NASA Ames Research Center

Moffett Field, CA 94035, USA
3 Deutsches Forschungszentrum für Künstliche Intelligenz

Bremen, Germany

Abstract. We motivate and introduce a query language PrQL designed
for inspecting machine representations of proofs. PrQL natively supports
hiproofs which express proof structure using hierarchical nested labelled
trees. The core language presented in this paper is locally structured, with
queries built using recursion and patterns over proof structure and rule
names. We define the syntax and semantics of locally structured queries,
demonstrate their power, and sketch some implementation experiments.

1 Introduction

Automated proof tools and interactive theorem provers are increasingly required
to produce evidence of their claims as formal proof objects that may be inde-
pendently checked or, perhaps, imported into other systems or transformed in
particular ways. Proofs connect together atomic rules of inference and axioms in
a sound way according to an underlying logic. Checking that this has been done
correctly is essentially straightforward, although producing a proof in the first
place may be extraordinarily difficult.

Real proofs can be very large, perhaps consisting of tens or hundreds of
thousands of atomic rules of inference. There are many things that are interest-
ing to know about such objects, beyond the basic fact that they are correctly
constructed. For example, some natural questions when inspecting a proof are:

– What is the high-level structure of this proof, (how) can we break it down
into pieces to understand it?

– Given a proof of a property which exploits a set of domain-specific axioms,
which axioms actually occurred in the proof?

– Given a problem statement which contains some existential propositions as
sub-formulae, which, if any, witnesses were found to make them true?
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– Does a large proof contain duplicated parts that could be abstracted into a
lemma, to reduce the size of the proof?

When the user is trying to understand the proof construction process, there
are natural questions which relate the constructed proof back to the procedures
that produced it. If tactics are our notion of proof producing procedure, some
questions relating the proof to the tactics that produced it are:

– Given a set of tactics and a proof, which tactics were invoked in producing
the proof and what subgoals did they solve?

– Were any tactics used recursively?
– Does one particular tactic always lead to another being invoked?
– Did some tactics get invoked but do no useful work?

These sort of questions are not idle curiosities: they are useful for practical
proof engineering, when managing and maintaining sets of properties, proofs and
programs which create and check them. One of us (Denney) routinely resorts to
low-level scripted tools to perform these kind of examinations when building
large safety cases supported by formal proofs.

We consider querying proofs here in a rigorous, generic manner with the hope
of enabling general tools with clear foundations. In this paper, we introduce the
basis of a query language PrQL designed specifically for querying proofs.

Hierarchical structured proofs. The foundation we start from is hiproofs [1,2],
which provide a simple abstract notion of proof tree by composing atomic rules
of inference from an unspecified underlying logic. Going beyond ordinary trees,
they have a notion of hierarchy, by allowing labelling and nesting of subtrees.
This simple addition provides a precise and useful notion of structure in the
proof which can be used, for example, for noting where a lemma was applied, or
where a particular tactic or external proof tool produced a subtree.

Contributions and paper outline. This paper contributes towards generic foun-
dational aspects of theorem proving systems. Query languages for tree and graph
structured data have been studied over the last decade or so, but have rarely
been applied to formal proofs. We design a new core proof query language from
first principles, directly connected with a precise abstract notion of proof. With
motivating examples and implementation experiments, we establish its utility.

The rest of this paper is structured as follows. Section 2 introduces the foun-
dation of hiproofs used in the rest of the paper. Section 3 describes the design
decisions we took for our query language, and introduces it with a sequence of
informal examples and their intended meanings. Section 4 describes the meaning
of queries formally, so one can check that example queries indeed have the desired
meanings; it also provides a baseline decidability result. In Section 5 we sketch a
simple prototype implementation, which we use to validate our language design;
full-scale experiments on large proofs remain as future work. We mention some
of our future plans and discuss some related work in the concluding Section 6.
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2 Hiproofs

Hiproofs add structure to an underlying derivation system, a simple form of
logical framework. We give a brief recap here, for fuller details please see [1,2].

A hiproof is built from (inverted) atomic inference rules a in the underlying
derivation system, to which we give a functional reading: a hiproof maps a finite
list of input goals [γ1, . . . , γn] to a list of output subgoals [γ′

1, . . . , γ
′
m]. Such a

hiproof has the arity n→ m. A nested hiproof, appearing immediately inside a
labelled box, has a single input goal which is the root of the tree at that level.

Informally and graphically, we draw hiproofs as inverted trees with a nested
structure. Denotationally, a hiproof can be understood as a pair of an ordered
tree and a forest with the same set of nodes, subject to some well-formedness
conditions. Syntactically, a hiproof can be written as a term s in this grammar:

s ::= a atomic
| id identity
| [l ] s labelling
| s1 ; s2 sequencing
| s1 ⊗ s2 tensor (juxtaposition)
| 〈〉 empty

(1)

Fig. 1 shows an example hiproof term and its graphical representation in the
middle. Boxes indicate nestings and have labels in their top corners, indicating
the tactic which gave rise to the contents in the box; unlabelled boxes con-
tain atomic rules. Tensor ⊗ places hiproofs side-by-side and sequencing ; builds
“wiring” to connect hiproofs together, using identity to create wires where a
goal is not manipulated. In the example, id exports the second subgoal from
the atomic rule a outside the box labelled l. The empty proof 〈〉 is useful when
building proofs programmatically.

Valid hiproofs. A hiproof is called valid if it corresponds to a real proof tree in
the underlying derivation system. The hiproof term in Fig. 1 validates the proof
tree shown on the right-hand side, where an input goal γ1 is proved using the
atomic inference rules a, b and c. Validity extends naturally to arbitrary hiproof
terms that have more than one input goal; such a term corresponds to a finite
sequence of proof trees. We write s ` g1 −→ g2 if s is valid in this more

([l] a ; b ⊗ id) ; [m] c

c
m

l
a

b γ2
b

γ3
c

γ1
a

Fig. 1. A hiproof, its graphical representation and a proof it validates.
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γ1···γn

γ
a is an atomic inference

a ` γ −→ [ γ1, . . . , γn ] id ` γ −→ γ

s ` γ −→ g

[l] s ` γ −→ g 〈〉 ` [ ] −→ [ ]

s1 ` g1 −→ g s2 ` g −→ g2
s1 ; s2 ` g1 −→ g2

s1 ` g1 −→ g′1 s2 ` g2 −→ g′2
s1 ⊗ s2 ` g1 ∧ g2 −→ g′1

∧ g′2

Fig. 2. Validation of hiproofs (the symbol ∧ stands for list append).

general sense, taking a list of input (proven) goals g1 to produce a list of output
(unsolved) goals g2. This relation is defined by the rules in Fig. 2.

Validity checking can be seen as a way of adding goals to a hiproof; corre-
spondingly, a valid hiproof can be seen as a nested labelling applied to a flat
proof. A hiproof thus represents the outcome of a proof process rather than the
method by which it was obtained, and is independent of the direction (forwards
from axioms or backwards from conjecture) of construction. In this paper we re-
strict our attention to valid hiproofs and we assume that the goals are uniquely
determined by the validated hiproof.

3 Local structured queries

How should we express queries on proofs such as those in Sect. 1? One design
choice would be to take an existing query language for graph (or semi-structured)
data models (e.g., see surveys [3,4]), and then map from hiproofs into the existing
language and use queries there. The drawback with that approach is that we
immediately lose connection with our particular source language. Since our initial
aim is to understand the concepts and constructs specific to querying proofs,
rather than more general objects, we start from queries written in a minimal
native query language, and investigate a direct semantics for them.

Our queries follow the hiproof structure, matching on leaves with atomics,
structured proofs using labels, or on input or output goals of subproofs. In this
paper, we consider queries that specify structure locally, in the sense that they
cannot directly compare one part of the tree with another, or measure absolute
position within the global proof. This restriction arises intentionally, because
we use only first-order variables that refer to names and goals, not to subtrees
or paths. Despite this, the language is still rather expressive and captures our
desired queries fairly succinctly, so it is a good candidate core query language.

To introduce the language, we begin with constructs for matching leaves,
boxes and goals in proofs, and then build up following the hiproof syntax.

Matches. We build matches inside queries using wildcards and match variables,
constants (atoms, sets and predicates) and negation (to construct the comple-
ment of a match). Let VarN be a set of schematic variables standing for names,
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ranged over by N in general and A when we suggest an atomic rule name or L a
label name. Let VarG be a set of variables standing for lists of goals. The name
matches and goal matches are given by:

nm ::= a | l | ∗ | ξ | N | ¬nm
gm ::= [ψ1, . . . , ψn] | G | ¬gm

where ξ stands for a logic-dependent predicate on names, and ψ stands for a
logic-dependent predicate on goals used to check some structural property of
the goal term. For example we might have a predicate that checks whether a
goal γ is in the form of a horn clause, when φhornclause(γ) holds. Most simply,
we suppose that we always have a predicate to check for equality with any specific
goal γ and we overload γ to stand for that predicate.

We use matches to build up the basic queries that specify local structure.
Informally, a basic query may hold for a given hiproof and a substitution of
variables the query contains; we will define the result of a query to be the set of
variable instantiations that make it true. As (merely) a matter of style, we use
a verbose SQL-like textual notation:

q ::= ∗ anything non-empty
| atomic nm atomic rule match
| nothing nothing (matches only identity)
| inside nm q q satisfied inside box with label matching
| q1 then q2 q1 and q2 satisfied by successive nodes in ;
| q1 beside q2 q1 and q2 satisfied by adjacent nodes in ⊗
| ingoals gm goals into sub-proof match
| outgoals gm goals out of sub-proof match

Basic queries are almost the same language as the hiproof syntax itself, omitting
empty proofs and adding the ability to match on goals within. Thus, phrases act
as structural patterns matching against an implicit hiproof subject.

For the hiproof given in Fig. 1, the following queries are each satisfied (the
alignment around then matches the vertical split):

(inside l ∗) then (inside m ∗)
(inside ∗ ∗ then ∗ beside nothing) then ∗

(inside L1 ∗) then (inside ∗ atomic A)

The first two are purely structural, matching the form of the tree. The first
matches the outer structure consisting of the box labelled l followed by the box
labelled m. The second examines the shape inside the first box. The final query
is satisfiable with the unique instantiation {L1 7→ l, A 7→ c}.

Connectives. We allow propositional logical connectives to build compound
queries, with familiar intended meanings:

q ::= . . . | q1 ∧ q2 | q1 ∨ q2 | ¬q
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Search and check. Two important quantifier combinators on queries allow us to
search within a proof for somewhere that a query is satisfied, or check that a
query is satisfied everywhere.

q ::= . . .
| somewhere q q holds in some subproof
| everywhere q q holds in every subproof

With a syntactic interpretation, the natural domain of quantification is by sub-
term; because any subterm of a valid hiproof is also valid, this makes sense and we
take “subproof” to mean subterm. The scope of somewhere and everywhere
extends as far right as possible. These queries might be added directly to the
language, but we will define them instead using recursion (introduced below).

The somewhere combinator is used in many of our examples. For example,
a proof uses a tactic tac if the query

somewhere inside tac ∗

is satisfied. As another example, we use a match on a goal-list variable G to find
the goals passed into a tactic. The query

(somewhere inside m ingoals G) ∨ (somewhere atomic b ∧ ingoals G)

can be read as “tell me the goals that are input to tactic m or the atomic rule
b”. The result should be the pair of instantiations {G 7→ [γ2]}, {G 7→ [γ3]} for
the hiproof in Fig. 1.

When is everywhere useful? Not for anything that requires a fixed struc-
ture, but with a goal-matching assertion that checks the format of the goals, for
example, the check everywhere outgoals [φhornclause] requires that every goal
appearing in the tree must have that certain form. With conditional queries, we
use it to specify that goals appearing in certain places must have some property.

Recursive queries. Just as with tactics we can allow recursively defined queries.
Recursively defined queries allow us to build up regular patterns and are defined
using query variables Q:

q ::= . . . | µQ.q

where q is a query in which Q can appear free. An example recursive pattern is:

µQ. (atomic a then (ingoals [γ2] beside Q)) ∨ (inside m ∗)

which is satisfied by proofs that repeatedly apply the atomic rule a, until reaching
a box named m.

Using recursion we can define the searching and checking quantifiers:

somewhere q
def
= µQ. q ∨ (inside ∗ Q) ∨ (Q then ∗) ∨ (∗ then Q) ∨

(Q beside ∗) ∨ (∗ beside Q)

everywhere q
def
= µQ. q ∧ (atomic ∗ ∨ nothing ∨ (inside ∗ Q) ∨

(Q then Q) ∨ (Q beside Q))
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these ensure that q holds at one (or every) node following the structure of the
proof; notice that exactly one of the disjuncts must hold in the recursive cases.
Later on we will show that these definitions have the intended meaning.

Derived forms. Using this core, we can readily add more derived forms:

q1 when q2
def
= ¬q2 ∨ q1

isthen
def
= ∗ then ∗

isbeside
def
= ∗ beside ∗

provesgoal γ
def
= ingoals [γ] ∧ outgoals []

axiom nm
def
= atomic nm ∧ outgoals []

islabel nm
def
= inside nm ∗

whenin nm q
def
= inside nm q when islabel nm

somewherebeside q
def
= µQ. q ∨ (Q beside ∗) ∨ (∗ beside Q)

nearby q
def
= µQ. q ∨ (Q then ∗) ∨ (∗ then Q)

∨ (Q beside ∗) ∨ (∗ beside Q)

separately q1 and q2
def
= µQ. (inside ∗ Q)

∨ (somewhere q1 then somewhere q2)
∨ (somewhere q1 beside somewhere q2)

The when conditional combinator is satisfied if q1 is satisfied whenever q2 is;
by convention, the scope of q1 and q2 extend as far as possible. The last three
combinators again use recursion to expand the scope of the local structure spec-
ifications. The query somewherebeside q is satisfied if q is satisfied in a ⊗-list
of hiproofs; nearby q is an adjusted version of somewhere which restricts to
the same level, without descending into boxes. The query separately q1 and q2
requires that q1 and q2 hold on disjoint portions of the proof.

3.1 Examples

We show some of our motivating examples relating proofs and tactics. First, the
tactic tac occurs recursively in a hiproof if the query

somewhere inside tac somewhere islabel tac

is satisfied. The tactic inner always occurs whenever the tactic outer is invoked
if this query is satisfied:

everywhere whenin outer somewhere islabel inner.

More elaborately, a tactic named base always appears alongside a tactic named
step inside the tactic induct:

everywhere whenin induct somewhere (somewherebeside islabel base)
∧ (somewherebeside islabel step).

Examples returning results are given in Sect. 4.1 after introducing the semantics.
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4 Semantics

We will define the semantics of queries using a satisfaction relation s |=σ q. This
denotes satisfaction of a query on a hiproof s with respect to a substitution σ for
match variables. The substitution maps variables N to names for atomic tactics
and labels, and variables G to lists of the form [γ1, . . . , γn].

Two base satisfaction relations define matching on names and goal lists:
∗ |=σ n always
n′ |=σ n iff n = n′

ξ |=σ n iff ξ(n)
N |=σ n iff σ(N) = n

(¬N) |=σ n iff ¬(N |=σ n)

[ψ1, . . . , ψn] |=σ g iff ∃γ1 · · · γn. g = [γ1, . . . , γn]
and ψ1(γ1) · · ·ψn(γn)

G |=σ g iff σ(G) = g
(¬G) |=σ g iff ¬(G |=σ g)

Before giving the main relation, we consider hiproof terms in more detail.
Terms s in the hiproof grammar denote tree-based models in the denotational
semantics of hiproofs [1]. Under the denotational interpretation, certain terms
are equivalent. We will give our interpretation over the syntax, considering valid
hiproofs modulo the following equations generating this equivalence:

s ; id = s id ; s = s id is an identity for sequencing
s ⊗ 〈〉 = s 〈〉 ⊗ s = s 〈〉 is an identity for juxtaposition

s ; 〈〉 = s 〈〉 is a right-identity for sequencing
s1 ; (s2 ; s3) = (s1 ; s2) ; s3 ; is associative

s1 ⊗ (s2 ⊗ s3) = (s1 ⊗ s2) ⊗ s3 ⊗ is associative
(s1 ; s2) ⊗ (s3 ; s4) = (s1 ⊗ s3) ; (s2 ⊗ s4) ; and ⊗ can be exchanged

It is easy to confirm that the equations preserve validity on the same lists of input
and output goals for the rules in Fig. 2. We will write s = s′ if two terms are
equal in the theory generated by these equations (i.e., closing under congruence).

Definition 1 (Query satisfaction). Let s be a valid hiproof and q a query in
the minimal query language. The satisfaction of q for s with the substitution σ
is defined as the least relation s |=σ q satisfying:

s |=σ ∗ when s 6= 〈〉
a |=σ atomic nm when nm |=σ a
id |=σ nothing

[l] s |=σ inside nm q when nm |=σ l and s |=σ q
s1 ; s2 |=σ q1 then q2 when s1 |=σ q1 and s2 |=σ q2
s1 ⊗ s2 |=σ q1 beside q2 when s1 |=σ q1 and s2 |=σ q2

s |=σ ingoals gm when gm |=σ g where s ` g −→ h
s |=σ outgoals gm when gm |=σ h where s ` g −→ h
s |=σ q1 ∧ q2 when s |=σ q1 and s |=σ q2
s |=σ q1 ∨ q2 when s |=σ q1 or s |=σ q2
s |=σ ¬q when ¬(s |=σ q)
s |=σ µQ.q when s |=σ q[µQ.q/Q]
s |=σ q when ∃s′. s′ |=σ q and s′ = s.
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Recursive queries µQ.q are interpreted using unfolding; this suffices since we
query only finitely deep trees. More precisely, we can define satisfaction using an
auxiliary relation |=n indexed by the maximum depth of the number of unfoldings
of a recursive query, where µnQ.q can be unfolded at most n times. Then |= is
defined as the union of all finite unfolding relations |=n. The definition works
for singly recursive queries where we do not need to interpret queries with free
query variables, but can be extended for mutually recursive queries.

Proposition 1. Let s be a valid hiproof. Then

1. s |=σ somewhere q iff ∃s′.s′ is a subterm of s and s′ |=σ q,
2. s |=σ everywhere q iff ∀s′.s′ is a subterm of s and s′ |=σ q.

(where quantification ranges over non-empty terms, and s is a subterm of itself).

Thus these important derived forms have the intended meanings.

How precise are our queries? The following proposition establishes, as in-
tended, that every term can be characterised up to equality by a query. Thus,
we can use queries to describe finite sets of hiproofs.

Proposition 2. Given any hiproof s not containing 〈〉, there is a query Q(s)
which characterises s precisely.

Proof. Let Q(s) be given by the embedding:

Q(a) = atomic a

Q(id) = nothing

Q([l] s) = inside l Q(s)

Q(s1 ; s2) = Q(s1) then Q(s2)

Q(s1 ⊗ s2) = Q(s1) beside Q(s2)

Now we claim that whenever s′ |=σ Q(s) for some s′, we must have s = s′.

Using a simple normal form, Prop. 2 can be extended to cover all hiproofs.

4.1 Examples and their results

Now we demonstrate the remainder of our motivating queries; meanings can
be calculated using the semantics above to show that they are correct. The
invocation of a query to get some results can be written in SQL style as:

select e from s where q

which denotes the set of expressions σ(e) for all substitutions σ that satisfy the
query (see Sect. 5 on how this can be implemented). That is:

{σ(e) | s |=σ q}.
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The kind of expressions e chosen here depends on what we want to do with query
results. We don’t consider a general transformation language for query results
here, but one could easily allow expressions that combine pieces of query results
in arbitrary ways. Our examples below restrict to simple query variables.

– To find all the axioms in a valid hiproof s:

Axioms(s) = select A from s where
somewhere axiom A

Applied to s = ([l] a ; b ⊗ id) ; [m] c, this query returns {A 7→ c, A 7→ b}.
– To find the existential witnesses inside a valid hiproof s, we can find uses of

the existential introduction rule:

Wit(s) = select A from s where
somewhere atomic A ∧ atomic ExIt

Here, the ExI rule is annotated by the witness t that is chosen as part of its
name, and we use ExIt to denote the predicate selecting all such rule names.

– Which tactics are used in a proof?

Tactics(s) = select L from s where somewhere inside L ∗

– Which goals are input to (or output from) a tactic called tac?

Input(tac, s) = select G from s where
somewhere inside tac ingoals G

Output(tac, s) = select G from s where
somewhere inside tac outgoals G

– Which tactics call themselves recursively? (shown earlier for fixed tac)

Rec(s) = select L from s where
somewhere inside L somewhere islabel L

– Which tactic uses atomic tactic a, i.e., inside which label does a occur?
Using the nearby combinator defined in the last section, this query returns
all labels L which contain a directly, i.e., labels which are the immediate
surrounding parent of a, not a more distant ancestor.

Inside(a, s) = select L from s where
somewhere inside L nearby atomic a

– Are there steps in the proof which have no effect?

UselessTacs(s) = select L from s where
somewhere inside L ingoals G ∧ outgoals G

This returns useless tactics that return the same goal that they were given
(necessarily G is a single element list by the hiproof structure). Some tactics
may be even worse and return the same goal that they were given and more
besides! To catch those, we could add subset inclusion to goal matching.
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– Are there duplicated subproofs inside a proof? We answer this by finding
labelled subtrees that have the same input and output goals, using the
separately operator introduced earlier:

Duplicates(s) = select L1, L2, Gi, Go from s where

separately inside L1 q and inside L2 q

where q abbreviates ingoals Gi ∧ outgoals Go.

In the last example, we might want to return (or replace) the actual duplicate
subtrees. To do that we would need to add variables ranging over hiproofs (or
paths in hiproofs) to the language; see Sect. 6 for remarks on this extension.

4.2 Query equivalence and decidability

Prop. 2 characterises proofs by queries. We can turn this around, and ask whether
queries can be characterised by the proofs that satisfy them. This motivates a
Leibniz-style equality between queries.

Definition 2. Two queries p, q are equivalent, written p ∼= q, if for all proofs
s and substitutions σ, we have s |=σ q ⇐⇒ s |=σ p.

We can now state a number of equations over queries. These are proven by
expanding Def. 2 and using Def. 1. First, conjunction and disjunction commute
over the basic queries; we write this as a family of equations:

inside nm (p ♦ q) ∼= (inside nm p) ♦ (inside nm pq) (2)
(p1 ♦ p2)⊕ q ∼= (p1 ⊕ q) ♦ (p2 ⊕ q) (3)
p⊕ (q1 ♦ q2) ∼= (p⊕ q1) ♦ (p⊕ q2) (4)

for ♦ ∈ {∧,∨} and ⊕ ∈ {then,beside}. Negation distributes over the basic
queries variously. E.g., the query ingoals gm is not satisfied by s iff the goals of
s do not match gm, whereas the query atomic am is not satisfied by s iff either
s is an atom that does not match am, or if it is not an atom. We give three
equations, and omit similar ones for outgoals, inside, then, and nothing:

¬(ingoals gm) ∼= ingoals (¬gm) (5)
¬(atomic am) ∼= atomic (¬am) ∨ (islabel ∗)

∨nothing ∨ isbeside ∨ isthen
(6)

¬(p beside q) ∼= ((¬p) beside ∗) ∨ (∗ beside (¬q))
∨ (atomic ∗) ∨ nothing ∨ (islabel ∗) ∨ isthen

(7)

Finally, we have the usual laws of propositional logic: De Morgan equalities, dou-
ble negation, commutativity and distributivity of conjunction and disjunction.
By reading our equations as rewrite rules from left to right, we get a decision
procedure for equivalence of queries, as long as they do not contain any recursion.
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Definition 3 (DNF). A query q is in disjunctive normal form (DNF), if it is
of the shape

∨
i=1...n

∧
j=1...mi

φi,j where φi,j are basic queries, or in other words
a disjunction of conjunctions of basic queries.

Proposition 3. For each recursion-free query q there is an equivalent query q′

in DNF, denoted as DNF(q).

The size of DNF (q) is exponential in the size of q. Most equations are linear
in the query argument (that is, the query arguments occur once on each side of
the equation), and hence only introduce a constant size increase when applied
left to right, but (3) and (4) and similarly distributivity for ∨ and ∧ contain
the query argument q and p twice on the right-hand side. Thus, each of then,
besides or ∧ may double the size, leading to exponential increase. Of course, the
size of the resulting DNF(q) will usually be much smaller; we can cut it further
down by eliminating contradictory conjunctions such as atomic a ∧ isthen.

Checking that a basic query q satisfies a given hiproof s is linear in the size of
q, as we just traverse the structure of q and s. Hence, checking that a query q′ in
DNF satisfies a given hiproof s is also linear in the size of q′, as we merely need
to check each of the basic queries φi,j against s. Hence, because of the size of
DNF(q), satisfiability of recursion-free queries is decidable in exponential time.

Proposition 3 does not hold for queries containing the recursion operator. To
check that a given recursive query q and substitution σ satisfy a hiproof s, we
can unfold the recursion in q as often as needed, and then use the DNF of the
unfolded term. The size of the hiproof s bounds the size of the unfolding, as a
hiproof cannot be smaller than a basic query it satisfies, and DNF(q) is always
larger than q. Thus:

Proposition 4. s |=σ q is decidable in exponential time over size(s) + size(q).

This straightforward argument establishes decidability. Better complexity bounds
surely exist, as they are known for related query languages and various fragments
(see e.g., [5]), but mappings into other languages are beyond our scope here.

5 Implementing queries

We have built a simple implementation of the query language in order to validate
its design by running example queries on small proofs and checking the results.
We directly use the semantics and turn Def. 1 into a function sat(s, q) which
implements the select statement from Sect. 4.1 and returns the (minimal) set
of all substitutions which satisfy q.

Substitutions are given as partial functions Var ⇀ T , where T is the set of
names or goal lists. Given two substitutions ρ and σ, their unification unify(ρ, σ)
is defined iff ∀a ∈ dom ρ ∪ domσ.ρ(a) = σ(a), and it is defined pointwise to be
σ(a) if σ(a) is defined, ρ(a) if ρ(a) is defined, and undefined everywhere else. To
combine two sets Φ and Ψ of substitutions, as returned by recursive calls of the
sat function, we define the combinator

Ψ � Φ = {unify(ρ, σ) | ρ ∈ Ψ, σ ∈ Φ, unify(ρ, σ) is defined}
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For the basic queries, there are simple functions satN and satG which return
the set of substitutions matching a given name or goal match. Then sat can be
recursively defined as follows (we only give some of the representative cases):

sat(a,atomic nm) = satN(a,nm)
sat([l] s, inside nm q) = satN(l,nm) � sat(s, q)

sat(s1 ; s2, q1 then q2) = sat(s1, q1) � sat(s2, q2)
sat(s, q1 ∧ q2) = sat(s, q1) � sat(s, q2)
sat(s, q1 ∨ q2) = sat(s, q1) ∪ sat(s, q2)

Note that when combining the results for a disjunctive query, we can just take the
union of the results. We can show the correctness of this definition, namely that
if σ ∈ sat(s, q) then s |=σ q, and also that if s |=σ q then there is ρ ∈ sat(s, q)
such that ρ ⊆ σ (so sat returns a minimal set of substitutions).

Implementation. Using this definition, our prototype implements the query lan-
guage for small experiments. It represents queries as an algebraic datatype Q,
and in time-honoured fashion uses SML as both implementation platform and
scriptable command-line interface. Hiproofs are represented modulo the equa-
tions in Sect. 4, following the denotational semantics in [1]. The implementation
is a functor which is generic over the proofs in question, reflecting the generic
nature of the query language.

We provide two instantiations of the generic implementation: one for the
syntactic hiproofs, where we have a datatype S as in (1), and one which models
Isabelle proof objects [6] as hiproofs. Taking existing proofs such as those in
Isabelle as hiproofs, we need to derive the hierarchical structure. We use theorems
to do this. That is, a box [l] s is a theorem named l, together with its proof s.
This leads to an interesting example: the query Rec(s) applied to an Isabelle
hiproof would return all theorems which are used in their own proof.

6 Related work and conclusions

This paper introduced locally structured proof queries in our proof query lan-
guage, PrQL. These build up patterns of structure that are matched to a position
in the implicit tree. Using logical connectives, variable substitution and struc-
tural recursion, queries can span and relate different portions of the tree and
express many natural queries on proofs. But, in this locally structured fragment
it is not possible to write a query that directly refers to (or returns) a position in
the tree, or does any counting. This limitation can be lifted, e.g., by adding a no-
tion of path to the language. In future work we will report on globally structured
queries allowed by this, as well as a slightly different language where queries are
defined directly over our semantic models.

Related work in theorem proving. The idea of a general query language for in-
specting formal proofs appears novel, although there are many investigations
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into exploiting proofs in particular ad hoc ways. We can’t survey all but men-
tion a few. Researchers have connected decision procedures to theorem proving
by grafting invocation records of decision procedures (with possible justifica-
tions) into an overall proof (e.g., [7]). Noteworthy sub-trees may be represented
using names for reference (and then shared to create a dag structure) as in
TPTP and its proof format TSTP [8]. Many systems use debugging output for
proof procedures to create a lengthy log, which explains where things were tried
and failed. Some tools use representations of proof trees in the first place which
connect the proof-producing mechanism to the proof and are equipped with
browsing and editing mechanisms, e.g., NuPrl [9]. Besides checking proofs [10],
other researchers have made efforts to translate proofs between systems [11];
discover dependencies between parts of proofs [12] to help simplify or rearrange;
and data-mine proofs to discover common patterns [13].

To exploit a formal generic proof representation language like hiproofs, it is
appealing to use a generic concrete representation like TSTP. A TSTP proof con-
sists of the sequence of formulas output by an automated theorem prover along
with their sources, and is hence a more “operational” format than hiproofs, which
can be translated into TSTP in either forwards-style (deriving conclusions from
axioms) or backwards-style (decomposing conjectures to back to axioms). Going
in the opposite direction, although TSTP does not represent tactics, inference
rules can be nested, giving a simple form of hierarchy. We could decompose the
derivations in various ways thus deriving an implicit hierarchy, or extend the
language with labels on sub-derivations to represent hierarchy explicitly. Proofs
in the TSTP archive can be queried online [14] using a range of primitive and
quantitative predicates, or by translation [15] into the Proof Markup Language
(PML) [16], which serves as an interlingua representation for the justification of
results produced by Semantic Web services. Queries in PML are simply partial
proofs, rather than expressions in a separate query language (of course, PrQL
also has close ties to its underlying proof language), and query evaluation seeks
to return (possibly partial) proofs that “fill in the blanks” in the initial query.
Our original motivation for developing a query language was to extract informa-
tion from TSTP proofs in order to construct safety cases, and we plan to extend
our prototype implementation to support this.

Query languages for structured data and programs. Away from theorem proving,
query languages for trees and graphs have been studied for some time. Languages
related to PrQL include those aimed at semi-structured (XML-like) models such
as UnQL [5] which uses structural recursion on tree (and graph) representations,
similarly to PrQL’s recursive queries, and Graph Logic [17] which uses a separat-
ing conjunction to destruct the graph subject of queries. Checking for patterns
in programs, ASTLog [18] is a Prolog variant for examining syntax trees and
PQL [19] is a more general framework for querying programs at varying levels
of abstraction. Establishing precise connections with PrQL would let us exploit
known complexity results, existing algorithms and their implementations.
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